水介质换能爆破技术与分段装药相结合 在南欧江三级水电站采石场中的应用

卞因凯, 程利明, 吴恩军, 代正勇

(中国水利水电第十工程局有限公司,四川 成都 610072)

摘 要:针对不同地质条件的施工环境,水介质换能爆破通过生产性试验以最终获得最优爆破参数——钻孔参数、炸药单耗、震动波、冲击波、飞石距离各种相关数据。为进一步降低炸药单耗,在水介质换能爆破试验的基础上,采用水介质换能爆破技术与分段装药相结合的爆破方式,降低炸药单耗的效果较为明显,达到了节约成本的目的。介绍了具体的应用过程。

关键词:水介质换能爆破技术;分段装药结构;新技术应用;南欧江三级水电站

中图分类号:TV7;TV52

文献标识码: B

文章编号:1001-2184(2019)增 1-0120-04

1 工程概述

南欧江三级水电站(Nam Ou 3 HPP)位于老挝琅勃拉邦省境内的南欧江中游河段,为南欧江7级开发方案中的第三级电站,地理坐标为东经102°40′02″、北纬20°49′15″。坝址距下游孟威新县城琅多(Nong Khiaw)河道约33 km。坝址部位多年平均流量为436 m³/s。水库正常蓄水位高程360 m,相应库容1.81×108 m³,装机容量为210 MW,保证出力47.18 MW,年发电量8.26 亿kW·h。枢纽采用混凝土闸坝、坝后河床式厂房布置方案,最大坝高59.5 m。

采石料场位于坝址下游左岸,距离坝址约6.4 km,距江边Sop Chaim 村约0.8 km,为一较宽厚的条形山梁。料场岩性为三叠系下统(T1)灰黑色、灰色微晶含白云质生物碎屑灰岩,岩石主要由微晶及亮晶方解石组成,其中生物屑、内碎屑含量约为65%~70%。岩层单层厚度一般为50~200 cm,多为厚层状~巨厚层状。断层构造不发育,主要发育顺层挤压面及节理。

2 水介质换能爆破技术的工艺原理及具有的优点2.1 工艺原理

水介质换能爆破作为一种新工艺,主要是从 热力学角度进行分析,即在"爆炸热力学系统"中 加入"一定量"的水,按照热力学定律和物质不灭 定律(质量守恒定律),炸药爆炸所释放的能在绝 热的"爆炸热力学系统"中将转换为水的内能,在 常压状态下,当温度达到 2 000 K(1 726.85℃)时 水开始分解为氢和氧,积蓄了炸药爆炸能的水和 炸药共生的爆生气态物质在炸药爆炸时 3 000 $^{\circ}$ 和 10×10^4 MPa 的高温高压条件下将进一步发 生化学反应,生成 HO_2 、 CO_2 、 NO_2 等新物质。

计算表明,这些高温高压爆生气态物质其体积是标准状况下的 1 100 多倍,由于这些气态物质高度压缩在"爆炸热力学系统"中,因此而积蓄了巨大的势能,它将遵循瞬时爆轰论的"爆轰产物的飞散遵循等距离面组规律",主要以急剧膨胀做功的方式挤压被爆介质使被爆介质破碎。在"爆炸热力学系统"中,由于水介质的加入,使水和炸药共同参与化学反应,利用炸药和水在密闭的"爆炸热力学系统"中炸药爆炸的爆炸能量完全转换为水的内能。换句话说,就是在"爆炸热力学系统"中由于有水介质的存在,在炸药爆炸的瞬间重新生成的氢、氧、氮等气态物质将主要以急剧膨胀的方式挤压破碎岩石、混凝土等爆破介质,完成爆破作业。

2.2 水介质换能爆破具有的优点

试验及应用表明:水介质换能爆破技术可以 提高炸药的有效利用率,减小爆破时的岩石破坏 范围,降低爆破危害,改善爆破时的震动,提高爆 破效果,降低爆破作业的施工成本,同时还可以降 尘、减小飞石距离,节能环保、降低能耗。

- 3 水介质换能爆破在南欧江三级水电站采石场中的使用效果
- 3.1 降低炸药单耗、提高炸药能量的有效利用率 水介质换能爆破相比于普通爆破其实际炸药 单耗可以降低 10%。以 12 m 深孔主爆孔为例,

收稿日期:2019-02-18

其炸药单耗对比情况见表 1。

表 1 同等爆破效果水介质换能爆破与普通爆破单耗对比表

工程部位		水介质换能爆破 单耗 /kg·m ⁻³	炸药单耗 降低率 /%
南欧江三级 水电站采石场	0.5	0.45	10

3.2 降低爆破危害、控制岩体破坏的范围

在爆破飞石监测试验过程中,使用 4 m×5 m 的彩条布作为监测块,在爆破完成后对监测点进行检查,监测块 3 被炮渣所覆盖,监测块 2 和监测块 4 各有部分飞石,但飞石粒径变小,监测块 1 收集到一块 6 cm×4.5 cm×1.5 cm的小飞石,监测块 5 未收集到任何飞石,试验结果表明:采用水介质换能爆破后,飞石的最大距离均在 50 m 范围内,水介质换能爆破飞石监测布置情况见图 1。

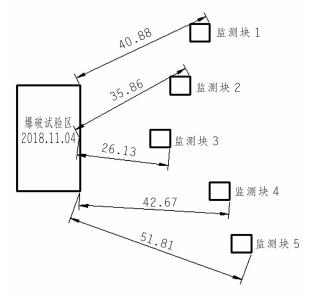


图 1 水介质换能爆破飞石监测布置图

3.3 改善爆破振动程度

在现场试验过程中,通过使用成都泰测科技有限公司生产的"Blast-UM 型爆破测振仪"进行测试得知,水介质换能爆破相比普通爆破,其爆破振动得到了明显改善,采用水介质换能爆破技术较普通爆破技术振动速度降低率达 23%以上。

根据《爆破安全规程》GB6722-2014,以及萨道夫斯基公式 $V=K\left[\frac{Q^{\frac{1}{3}}}{R}\right]^{a}$,式中K、 α 为与地质地貌相关的系数和衰减指数;V 为质点振动速度,cm/s;Q 为单响药量,kg;R 为距爆心距离,m。

对水介质换能爆破和普通爆破进行了振动速度预测,其爆破振动速度降低情况见表 2。

3.4 提高爆破效果

现场爆破试验结果表明:在使用同样炸药单 耗的情况下,水介质换能爆破出的石渣块度均匀 且为连续级配,超大块率在6%以内,使用水介质 换能爆破出的块度效果见图2;而以往普通爆破 出的超大块率则在15%左右。

图 2 使用水介质换能爆破出的块度效果图

3.5 节能与环保

(1)采用水介质爆破可以减小爆破烟尘的产生,水介质换能爆破烟尘情况见图 3,普通爆破烟尘情况见图 4。

图 3 水介质换能爆破烟尘照片

图 4 普通爆破烟尘照片

爆破方式	单响最大装药量 Q/kg	距离爆心距离 R/m	a	K	预测振动速度 $v / \text{cm} \cdot \text{s}^{-1}$	爆破振动速度 降低率 /%	
普通爆破	20	30	1.77	161.27	3.47	0.4	
水介质爆破	20	30	1.62	170.09	2.29	34	
普通爆破	40	30	1.77	161.27	5.04	20	
水介质爆破	40	30	1.62	170.09	3.45	32	
普通爆破	80	30	1.77	161.27	7.34	0.0	
水介质爆破	80	30	1.62	170.09	5.2	29	
普通爆破	100	30	1.77	161.27	8.27	9.0	
水介质爆破	100	30	1.62	170.09	5.93	28	
普通爆破	200	30	1.77	161.27	12.03	9.0	
水介质爆破	200	30	1.62	170.09	8.93	26	
普通爆破	400	30	1.77	161.27	17.49	0.0	
水介质爆破	400	30	1.62	170.09	13.44	23	

表 2 相同药量、相同距离时采用不同爆破技术爆破振速降低率表

(2)对相同装药量、相同距离下的噪音进行监测取得的成果表明:采用水介质爆破技术比普通爆破噪音降低约 15%。

4 水介质换能爆破技术与分段装药结构结合的 应用

4.1 施工方案

采石场开采的毛料主要用于成品骨料的加工,而砂石系统粗碎车间对毛料粒径的要求为最大粒径不超过80 cm 且为连续级配,如果爆破后其上部的大块石较多,则需二次解爆才能满足砂石系统粗碎车间的加工需求,进而增加施工成本。

为进一步减少超大块径,最终决定采用水介质换 能与分段装药相结合的爆破方案。

4.2 水介质换能爆破技术与分段装药结构的施工方法

所谓分段装药,就是将其分成底部和上部两段(以9m和12m孔深为例)进行装药,同时采用两个同段位非电雷管孔内起爆,中间则采用专用的水柱装置将两段炸药分开,进而保证钻孔底部的起爆药量,亦保证了孔口顶部因堵塞段过长而造成大块石过多过大的现象,采石场装药结构见表3,水介质与分段装药结构见图5。

表 3 南欧江三级水电站采石场装药结构设计表

71.363 Act 00 414.00	HE 71.47 W	₩ ±¢	W-71-	壮	装药结构 /m						
孔深 /m	间距 /m	排距	孔径	/m ³	单耗 /kg•m ⁻³	炸药 /kg	装药高度 -	底部	中部	上	部
/ III	/m /m /m	/m /mm /m³	/ kg - III -	/ n g	/ m -	炸药	水袋	炸药	粘土		
9	3.5	2.6	105	81.9	0.41	33.58	4.35	3	3	1.35	1.65
12	3.5	2.6	105	109.2	0.41	44.77	5.75	3.5	3.6	2.25	2.65

说明:(1)在炮孔堵塞段装药可以最大限度地减小炮孔顶部的大块率;(2)炮孔上部装药采用与底部装药相同的同段雷管起爆。

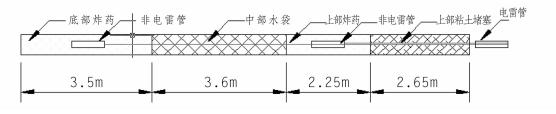


图 5 水介质与分段装药结构图

施工工艺为:装底部炸药→中部装专用水柱 装置→装上部炸药→孔口粘土堵塞。装药过程 中应使用提前准备好的专用容器和量具,避免 因装药量不准确或装药量过多等造成炸药成本 增加。

起爆方式采用多排孔间微差挤压起爆方式,

起爆网络的设计必须保证每排孔能够自由崩落和 排与排之间的延时时间间隔,前排孔需为后排孔 爆破创造自由面所需要的足够时间。

5 施工综合效益与经济效益

5.1 施工综合效益明显提高

采用水介质换能爆破技术与分段装药相结合

的爆破方式,爆破效果明显改善,爆破粒度均匀, 爆堆减小,方便了装车、运输作业,机械设备施工 效率得到了很大程度的提高。烟雾和灰尘得到了 有效控制,满足了环保施工要求。特别是爆破飞 石距离大为降低,降低了破坏范围和爆破危害。

经济效益与价值

普通爆破方式与"水介质换能爆破与分段装 药结构"经济对比情况见表 4。

表 4 普通爆破方式与"水介质换能爆破与分段装药结构"经济对比表

爆破方式	炸药单耗 /kg・m ⁻³	炸药单价 /元・kg ⁻¹	每 m³ 炸药 价格 /元	每 m³ 水柱装置 价格 /元	每 m³ 炸药 降低 /元	炸药成本 降低率 /%	总体成本 降低率 /%
普通爆破方式	0.5	7.8	3.9	0			
水介质换能爆破 与分段装药	0.41	7.8	3.198	0.12	0.702	18	14.9

说明:炸药和水柱装置的价格均按照目前市场价格进行计算。

水介质换能爆破技术与分段装药的爆破方式 使炸药单耗下降 18%,施工成本降低 14.9%,并 目保证了爆破粒径满足加工需求。

机械设计使用效率对比情况见表 5。

表 5 机械设备使用效率对比表

爆破方式	设备配置	施工工程量 /t•班 ⁻¹
普通爆破方式	一台卡特 300 反挖、5 台 25 t 自卸汽车	1 860
水介质换能爆破 与分段装药	一台卡特 300 反挖、7 台 25 t 自卸汽车	2 680

说明:(1)表5中每班的工作时间为8.5h;(2)此工程量数据是经 过目常记录总结后得出的相对参考数据。

普通的爆破方式因大块度石渣较多,1 台斗 容 1.6 m³ 的反铲只能满足 5 台 25 t 自卸汽车的 装车能力,装运能力为1860 t/班,而采用水介质 换能爆破技术与分段装药结构的爆破方式,爆破 效果得以改善,大块度粒径减少,1台斗容 1.6 m3 的反铲可以满足7台25t自卸汽车的装车能力, 装运能力提高至 2 680 t/班,机械设备的施工效 率提高了44%。

由此可以看出:水介质换能爆破技术与分段

装药结构爆破方式的应用,不仅直接降低了施工 成本,而且机械设备效率得以提高,其使用成本也 大大降低,综合施工效益和经济效益明显。

传统爆破施工观念中是单一地考虑爆破炸药 单耗,一味地用降低单耗来满足控制爆破成本的 目的,而未考虑其它环节的关联成本和综合施工 效益。通过实践总结得知,爆破施工不能只考虑 爆破炸药的单耗,同时也要考虑整体施工效益。 只有不断地采用新工艺、新技术,努力探索新的方 法,不断地创新实践、相互结合应用,节能、环保, 才能创造出更高的经济效益和价值。

作者简介:

卞因凯(1984-),男,湖北宜昌人,工程师,学士,从事建设工程施 工技术与管理工作;

程利明(1983-),男,河南济源人,工程师,学士,从事建设工程施 工技术与管理工作;

吴恩军(1979-),男,四川都江堰人,高级工程师,学士,从事建设 工程施工技术与管理工作;

代正勇(1983-),男,四川成都人,工程师,学士,从事建设工程施 工技术与管理工作. (责任编辑:李燕辉)

岷江水电推进混改和国网资产整合

2月14日,岷江水电披露了重组预案,拟与关联方信产集团进行资产置换,并将发行股份向信产集团及交易对方购 买资产。交易最终完成后,岷江水电将主要配售电及发电业务相关资产负债等置出上市公司,业务也将由之前的传统配 售电及发电业务,转变为新型信息通信业务。公司控股股东将变更为信产集团,实控人仍为国务院国资委。此次资产置 换整合,是积极推进"混改"和国家电网的资产整合。

岷江水电除部分参股权、待处置整合资产及维持上市公司经营必要的保留资产外,此次拟将主要配售电及发电业务 相关资产负债等置出上市公司,与信产集团持有的中电飞华67.31%股份、继远软件100%股权、中电普华100%股权、中 电启明星75%股权的等值部分进行置换。倘若交易最终完成,中电飞华、继远软件、中电普华、中电启明星将成为岷江 水电的全资子公司。岷江水电的置出资产将划转至国网四川公司,有利于进一步理顺相关电网资产管理关系,提高电网 统一规划运营效率,消除供电业务同业竞争。

> (每日经济新闻 靳水平 2019年2月18日)