龚嘴水电站水轮发电机组振动分析及探讨

曾燕生1，李东2，燕飞1

(1. 四川电力职业技术学院，四川 成都 610072；2. 龚嘴水电发电总厂，四川 乐山 614090)

摘要：针对龚嘴水电站水轮发电机组改造后出现的振动问题，作者通过对其原修试验结果的分析，并与机组的实际运行记录进行比较，提出了调整处理的措施。在调整过程中，测取调整过程中调整环的周度与同心度，检查调整轴心间隙和转子的安装位置，消除电磁不平衡、振动相位误差。实现水轮机转轮模型仿真，优化水轮机设计，进一步的技术改造措施，以改善水轮机的振动性和稳定性。

关键词：龚嘴水电站；水轮发电机组；振动；分析；设计

中图分类号：TM222；TV734.2+1；TH252.25 文献标识码：B 文章编号：1001-2184(2014)05-0101-05

0 引言

水轮发电机组振动是机组运行中一种非常有害的现象，它严重影响机组的供电质量，威胁着机组安全、稳定运行和使用寿命。1]。机组振动按照振动原理分为水力、机械和电气，其震动的复杂性主要表现在：几种频率同时存在，需要分析主次关系；既有多个部件振动，又有部件的耦合振动，既有强迫振动和共振，又有倍频共振和自激振动[2]。目前，解决机组振动问题的方法主要有：一是改进设计方法，以理论研究为基础，优化改进结构，水力、电磁设计以减少振动对机组运行稳定性的影响；二是在制造和安装方面，采用新材料、新工艺和先进制造技术，优化安装工艺，减少机组转动部分的不平衡重量；三是提高运行稳定性；三是在运行方面，通过调整检测或机组状态检测，如机组各部位振动监测、发电机气隙监测、水轮机空蚀监测和压力脉动监测等[3]，为解决机组振动提供依据；四是在检修和试验方面，在变转速、变负荷、变励磁和励磁相序等工况下，测量机组各部件振动、频率、相位和相位差等，运用时域波形分析法[4]、FFT变换等对机组进行分析，并通过水轮机叶片水口流体力学特性，减小水轮机气蚀不均和压力脉动不均等方法加以解决。实践证明这些方法较好地解决了实际生产中发生的机组振动问题。

针对综合改造后的龚嘴水电站 2F 水轮发电机组[以下简称 2F 机组]和新机组仍存在较大振动问题，本研究通过对水轮机和补气条件下稳定性试验数据的分析，并与实际运行数据进行分析对比，探讨解决该型机组振动的办法，并提出意见和建议。

1 基本情况

龚嘴水电站投产 30 多年来，水轮机轴承部件磨损严重，转轮、导叶、导叶等主要部件的寿命严重不足，导致水轮机性能下降，转轮叶片变形，影响水轮机性能。为保证机组安全稳定运行的事故，长期无法满足安全经济运行的需要。为此，龚嘴水电站实施了水轮发电机组的综合改造，2002 年 1 月至 2012 年 3 月，龚嘴水电站先后对全部水轮发电机组进行了综合改造，表 1 是改造前后水轮发电机组数据的对比表。

龚嘴水电站 2F 机组的改造是在对已改造的 1F、5F 机组改造的基础上进行的，主要有四个方面：一是增加大轴中心自然保护装置；二是增设了转轮叶片射流保护装置；三是增设了转轮叶片射流保护装置；四是增设了转轮叶片射流保护装置。实验结果证明这些方法较好地解决了实际生产中发生的机组振动问题。

针对综合改造后的龚嘴水电站 2F 水轮发电机组[以下简称 2F 机组]和新机组仍存在较大振动问题，本研究通过对水轮机和补气条件下稳定性试验数据的分析，并与实际运行数据进行分析对比，探讨解决该型机组振动的办法，并提出意见和建议。

2 稳定性试验主要内容

1.2.3.4.
表 1 嘉陵水电站增容改造前后机组参数对比

<table>
<thead>
<tr>
<th>参数名称</th>
<th>改造前</th>
<th>改造后</th>
</tr>
</thead>
<tbody>
<tr>
<td>涡轮机型号</td>
<td>HJ220-LI-550</td>
<td>HJDM33a-LI-592.1</td>
</tr>
<tr>
<td>涡轮机设计出力</td>
<td>102.5 MW</td>
<td>112.6 MW</td>
</tr>
<tr>
<td>涡轮机设计转速</td>
<td>88.2 r/min</td>
<td>88.2 r/min</td>
</tr>
<tr>
<td>涡轮机额定转速</td>
<td>180 r/min</td>
<td>180 r/min</td>
</tr>
<tr>
<td>额定水头</td>
<td>48 m</td>
<td>44 m</td>
</tr>
<tr>
<td>最大水头</td>
<td>55.3 m</td>
<td>55.3 m</td>
</tr>
<tr>
<td>最小水头</td>
<td>39.7 m</td>
<td>39.7 m</td>
</tr>
<tr>
<td>设计流量</td>
<td>241 m³/s</td>
<td>288.7 m³/s</td>
</tr>
<tr>
<td>水位高</td>
<td>-1.0 m</td>
<td>-4.0 m</td>
</tr>
<tr>
<td>叶数</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>导叶数</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>上止跳阀行程</td>
<td>2 ~ 2.45 mm</td>
<td>1.6 ~ 2.0 mm</td>
</tr>
<tr>
<td>下止跳阀行程</td>
<td>2 ~ 2.45 mm</td>
<td>2 ~ 2.4 mm</td>
</tr>
<tr>
<td>上止跳阀高度</td>
<td>460 mm</td>
<td>320 mm</td>
</tr>
<tr>
<td>尾水管补气方式</td>
<td>自然补气</td>
<td>自然补气</td>
</tr>
<tr>
<td>涡轮发电机组</td>
<td>TS1280-150-68</td>
<td>SF110-68/12810</td>
</tr>
<tr>
<td>额定容量</td>
<td>129.4 MVA</td>
<td>129.4 MVA</td>
</tr>
<tr>
<td>额定功率</td>
<td>100 MW</td>
<td>110 MW</td>
</tr>
<tr>
<td>操作功率因素</td>
<td>0.85</td>
<td>0.85</td>
</tr>
</tbody>
</table>

针对嘉陵水电站2F机组振动情况，由四川电力试验研究总所进行了机组稳定性试验。

2.1 稳定性试验检测方法和参数

嘉陵水电站稳定性试验检测方法，包括：①滑行、下导、水平动态响应测试；②上机架、下机架、顶盖和尾水门的运行水平、垂直振动；③蜗壳压力、尾水管压力脉动测量；④水轮发电机组电压、功率、导叶开度、上/下水位等。

2.2 稳定性试验项目及内容

嘉陵水电站稳定性试验项目包括：①启动和停机试验；②变负载试验：在各转速下测量相关部位摆度和振动，检查转子质量不平衡；③变工况试验：在不同空载额定电压条件下测量各部位转速和振动，检查转子的偏心力不平衡；④带负荷试验：以10MW一个测试点，在不同工况下测量机组相关部位摆度和振动，并进行补气条件下以上试验。

3 水轮发电机组振动试验分析

3.1 启动和停机试验分析

图1是2F机组变转速试验时，在起动时，滑行、下导轴承、轴瓦轴承处X、Y方向摆动的超频响应特性。图2是各转速下，上机架、下机架和顶盖的水平、垂直方向振动超频响应特性。

在试验时2F机组转速小于50%额定转速，滑行摆度较大，由图1可知，各部位摆度随转速的增加

图2是2F机组变转速试验时各部位摆度随转速的增加而减小，但减小幅值不显著，其中，滑行摆度幅值变化在100%额定转速时，滑行X轴方向幅值约145 μm，转轴额定转速523 μm。频谱分析显示存在幅值为189 μm的低频成分。下导摆度幅值与滑行基本相同，但幅值变化较小。图2所示，上、下机架垂直振动幅值随转速增加并不显著，但是水平振动变化较大。综上所述，水平振动变化较大。
在一定程度的磁拉力不平衡。

图 3 2F 水轮发电机组变频试验各部位
摆度趋势图

图 4 2F 水轮发电机组变频试验各部位振动趋势

3.3 剖负荷试验分析

图 5 2F 机组补气前 60 MW 工况时上导 +X 摆度
顶盖 +Y 垂直振动, 尾水管振动频谱图

图 6 2F 机组补气后 60 MW 工况时上导 +X 摆度,
顶盖 +Y 垂直振动, 尾水管振动频谱图

图 5 是金口 2F 机组未补气状态下且功率为
60 MW 工况时的频谱图, 从上至下依次为上导摆度,
顶盖垂直振动, 尾水管振动; 图 6 是补气状态下
相同工况相同测点的频谱图。限于篇幅, 将 10 ~ 110 MW 各工况下的各测点的 0.3, 1, 2, 3, 4 倍
转频及以上转频和相应振幅的统计得到表 2 - 4。机组转频值为 1.47 Hz。

由表 2 可知, 补气前上导处 1 倍转频的
最大幅值出现在 10 ~ 30 MW 负荷区, 振幅值为
610 ~ 680μm,40 MW 以后随着负荷的增加而逐
渐减少, 最小幅值为 170μm。补气后, 上导处 1.2
倍频振幅的规律没有显著变化。其次, 在 0.3 ~
0.4 倍频下, 负荷为 30, 40, 70, 80, 90 MW 时上导
振幅较大, 其中在 70, 80 MW 负荷时振幅最大, 达
到 500μm, 610μm, 补气后振幅减小不显著。根据
国内外多年的工程实践, 一般在导叶开度为 40% ~
70%, 或最优流量的 30% ~ 80% 范围时, 尾水
管中会出现低频涡带 [5]。由此可知, 2F 机组存
在低频涡带引起的振动。

根据资料 [5], 国外有制造厂建议将混流式
水轮机运行范围大致分成 A, B, C, D 四个区。A 区
为极低负荷运行区; B 区为低部分负荷运行区, 其
振动主要与尾水管的旋转涡带有关, 高部分负荷

* Sichuan Water Power 105
表 2 2 F 机变负荷试验时导摆度频谱统计表

<table>
<thead>
<tr>
<th>负荷</th>
<th></th>
<th>转</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>补气前</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3 倍</td>
<td>1 倍</td>
<td>2 倍</td>
<td>3 倍</td>
<td>4 倍</td>
<td>0.2 ~ 0.5 倍</td>
<td>1 倍</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>680</td>
<td>240</td>
<td>50</td>
<td>70</td>
<td>10</td>
<td>560</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>610</td>
<td>300</td>
<td>90</td>
<td>80</td>
<td>30</td>
<td>445</td>
<td>360</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>660</td>
<td>320</td>
<td>60</td>
<td>50</td>
<td>42</td>
<td>440</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>550</td>
<td>240</td>
<td>100</td>
<td>70</td>
<td>83</td>
<td>440</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>400</td>
<td>180</td>
<td>70</td>
<td>50</td>
<td>60</td>
<td>263</td>
<td>220</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>300</td>
<td>140</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>220</td>
<td>170</td>
</tr>
<tr>
<td>70</td>
<td>500</td>
<td>210</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>170</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>610</td>
<td>270</td>
<td>80</td>
<td>55</td>
<td>60</td>
<td>440</td>
<td>140</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>230</td>
<td>240</td>
<td>130</td>
<td>87</td>
<td>50</td>
<td>260</td>
<td>225</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>70</td>
<td>225</td>
<td>60</td>
<td>80</td>
<td>60</td>
<td>42</td>
<td>138</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
<td>172</td>
<td>63</td>
<td>105</td>
<td>60</td>
<td>25</td>
<td>170</td>
<td>100</td>
</tr>
</tbody>
</table>

表 3 2 F 变负荷试验时转 Y 向垂直振动频谱统计表

<table>
<thead>
<tr>
<th>负荷</th>
<th></th>
<th>转</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>补气前</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 ~ 0.3 倍</td>
<td>1 倍</td>
<td>2 倍</td>
<td>3 倍</td>
<td>6 ~ 12 倍</td>
<td>0.2 ~ 0.3 倍</td>
<td>1 倍</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>2</td>
<td>25</td>
<td>1.3</td>
<td>2 ~ 4</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>64</td>
<td>1.5</td>
<td>21 ~ 12</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>4</td>
<td>39</td>
<td>10</td>
<td>6</td>
<td>46</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
<td>14</td>
<td>3</td>
<td>4 ~ 5</td>
<td>40</td>
<td>3</td>
<td>19</td>
<td>4.5</td>
</tr>
<tr>
<td>50</td>
<td>16.5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2.5</td>
<td>50</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>5.3</td>
<td>0.8</td>
<td>0.7</td>
<td>1.5</td>
<td>2</td>
<td>2.7</td>
<td>0.5</td>
<td>2.2</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>1.2</td>
<td>2.2</td>
<td>2.1</td>
<td>0.75</td>
<td>6</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>4.5</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>7.8</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>2.4</td>
<td>0.4</td>
<td>1.4</td>
<td>0</td>
<td>15</td>
<td>4.5</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>5.8</td>
<td>1.3</td>
<td>1.9</td>
<td>0.4</td>
<td>1</td>
<td>6</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
<td>1.25</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
<td>2.1</td>
<td>1.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

表 4 2 F 变负荷试验时噪声振动频谱统计表

<table>
<thead>
<tr>
<th>负荷</th>
<th></th>
<th>转</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>补气前</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 ~ 0.3 倍</td>
<td>1 倍</td>
<td>2 倍</td>
<td>3 倍</td>
<td>4 ~ 12 倍</td>
<td>0.2 ~ 0.4 倍</td>
<td>1 倍</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>480</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>550</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>20</td>
<td>350</td>
<td>100</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>570</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>360</td>
<td>100</td>
<td>20</td>
<td>9</td>
<td>15</td>
<td>500</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>350</td>
<td>60</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>650</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>340</td>
<td>70</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>460</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>290</td>
<td>60</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>110</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>450</td>
<td>20</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>300</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>700</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>210</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>90</td>
<td>210</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>225</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>85</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>59</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

运行区，在不同水头最优流量的 65% ~ 90% 工况, 占可发现高于转频的压力脉动存在于整个流程中，其频率常为 1 ~ 5 倍转频，且比较稳定；C 区又分为最优效率运行区和满负荷运行区；D 区为超负荷运行区[5]。由表 3 可知，在 0.3 倍转频附近，补气前后最大振幅都出现在 30, 40, 50 MW 负荷段，振幅为 27 μm, 12.5 μm, 16.5 μm, 约为其它负荷段的 2 ~ 10 倍。补气后振幅还有明显增加，其特征与 B 区低部负荷运行特征比较接近，判断其振动是由尾水涡带造成的。

另外，1 倍频的振动，补气前后较大振动值均出现在 10 ~ 50, 80, 90 MW 区域(72.7% ~ 81.8%
负荷段），振动规律和幅值无明显变化。2 倍频的
振动，补气前后在 10～50 MW 负荷区振动幅相对
较大，其它负荷区振动较小。3 倍频和高倍频振
动的规律与 2 倍频振动基本一致。上述 2F 机组
振动现象与前述高负荷水平区的振动特征比较吻
合。

此外补气前后顶盖垂直振动的变化规律基本相同，且存在 0.67 倍频和 1.36 倍频的振动，振幅频
率无明显的规律。

由表 4 可知，补气前尾水管处的 0.3 倍频振
动在 10～90 MW 负荷区较大，振幅为 210～700
μm，最大振幅出现在 80 MW 处；补气后振动规律
与补气后基本相同，振幅为 210～650 μm，最大振幅
在 40 MW 处；机组负荷在 100～110 MW 区间，振
幅减小 2 倍以上。0.68 倍频振动规律与 0.3 倍
频基本相同。仅振幅减小。在 10～60 MW 负荷
区处，1 倍频振动振幅为 60～100 μm，70～90 MW
负荷区振幅为 10～20 μm，100～110 MW 负荷区
最小；2,3,4 及以上倍频的振动，随倍频数的增加
其振动区间逐渐减小，且振幅也随之减小。补气
后，振动的负荷区间缩小到 10～50 MW，且振幅
随倍频数增加而减小。

上述分析可见，尾水管内存在 0.3 倍频左右
的低频带，也证实了低部分负荷区的振动与低频
带有关。此外机组在 100～110 MW 负荷区运行
较为稳定，稳定运行范围较小且偏高。

值得注意的是通常在 70%～75% 负荷区，涡
带与机组同心同向，无螺旋，压力脉动很小，对机
组运行无扰动[5]，而螺嘴 2F 机组在 64%～73%
负荷区振幅为最大值，补气后最大振幅移至 45%～
以下负荷区。

3.4 采取补气措施后 2F 机组实际运行状态的分
析

对 2 F 机组采取补气措施后，通过调看 2012
下半年 2 F 机组的摆度和振动数据，其摆度测量
部位为滑环、下导和水导的 XY 向等 6 个测点，振
动测量部位为上机架、下机架、顶盖的 X、Y 和垂
直方向等 9 个测点，共计 104 280 条记录，其有效
记录 104 122 条，各测点有效记录在 6 900 条左
右，由各负荷区各测点振动平均值得出图 7。

由图可知，2F 机组有 94.26% 的时间运行
在 90 MW 及以上负荷区，运行稳定性较高。由图

图 7 2F 机组 0～110 MW 及以上负荷段振动
平均值的变化曲线

7 可见，在 ≤72.7% 负荷区顶盖垂直振动数据失
真，顶盖水平、上机架垂直和下机架水平振动平均
值均超过《规范》[1]规定的允许值 0.11 mm，特别
是顶盖水平振动值大大超过允许值，达到 300～
390 μm。

4 总结及处理建议

通过对机组稳定性试验和实际运行数据的分
析，笔者认为 2F 机组摆度和振动超标的主原因
是：

（1）变转速试验滑环处 摆 度 达 到 1.045～
1.278 mm，为[1]规定发电机集电环允许绝对摆度
值 0.5 mm 的 2 倍以上，可能是主轴、励磁机轴线
不正或滑环椭圆等因素引起，建议调整联轴器线
摆度，或测量联轴器圆度与同轴度，并加以修
复。

另外，在变转速试验中，顶盖、尾水管振动均
呈增加趋势，其原因是水轮机导叶开度较小，转轮
进、出口为非最优工况，水流流态紊乱从而引起振
动。

（2）随着励磁电流增加，滑环、下机架摆度以
及上、下机架水平振动均显现更大趋势，且摆度超
过[1]允许值 0.08 mm 和 0.11 mm，说明机组存在
一定的电磁力不平衡。需对定、转子空气间隙和
转子绕组匝间短路情况做进一步排查。

（3）变负荷试验说明，尾水管内除存在
27.3%～45.5% 负荷区低频涡带振动，还存在
72.7%～81.8% 高部分负荷区的振动。补气对消
除高部分负荷的振动效果较好，对低部分负荷区
振动效果较差。尾水管内测得振动与顶盖测振情
况较为一致，低频带机组振动区范围较大，为 0～
81.8% 负荷区。
～滞后45°。最终确定调频屏三级 3#的 PSS 参数：
W1 = W2 = W3 = 8，W4 = 0，Ks1 = 5，Ks2 = 0.93，Ks3 = 1，T1 = 0.14，T2 = 0.01，T3 = 0.25，T4 = 0.03，T5 = 0.1，T6 = 0.01，T7 = 8，M = 5，N = 1，
T8 = 0.6，T9 = 0.12，PSS 输入功率 = 30% Sn，PSS 限幅 = 5%～5%。

（5）PSS 阻尼效果校核试验：用负载阶跃法确定
PSS 增益及验证 PSS 效果。将 PSS 切除，进行
1～4% 的电压阶跃试验，同时启动录波，记录有功功率的摆动幅值及次数。将 PSS 投入，同样工况
下重复以上试验，录波观察，有功功率的摆动幅值
和次数应减少。在 PSS 参数设定好并且 PSS 投入
的情况下，逐渐增大 PSS 的增益，同时观察励磁系统
的变化，直到出现不稳定现象为止，此时的 KS1
值，即为 PSS 临界增益。最终取 PSS 临界增益的
1/3～1/5 倍为 PSS 放大倍数 KS1 的选定值。

（6）PSS 反调试验：PSS 投入，调节器快速增
减有功功率，观察无功功率是否存在反调现象。

5 结 语

随着电力系统对励磁系统的功能要求越来越高，因此对其限制器及 PSS 的功能测试显得尤为重要。
UNITROL？6800 型励磁系统自推向市场以来，在国内逐步被众多大中型水电厂采用，具有一定的市场影响力，其实际使用来
看，该型不愧为具有世界先进水平的励磁系统。

本文结合了我公司调频屏一级、二级水电站
600 MW 机组励磁系统设备现状投运过程中的实际
情况，详细介绍 UNITROL 6800 型数字式自
并励励磁系统中的控制方式和限制器，以及全面
总结了各种限制器的测试方法及注意事项，并详
细探讨了 PSS 的现场试验步骤及参数的选定，这
对从事励磁系统调试的电站运维人员具有很好的
指导和借鉴意义，为大型水电站的静态励磁系统
的功能测试提供了很好的参考依据。

参考文献：

[1] UNITROL？6800 Functional Description. ABB. 2010，11
置技术条件. 国家发展和改革委员会发布. 2006，9
[3] 李龙成. 现代同步发电机静态系统设计及应用（第二版）.
北京：中国电力出版社. 2009

作者简介：
叶建祥（1985-），男，江西龙南人，南京农业大学农业电气化与自动化科
毕业，工程师，现为广州铠天实业有限公司从事
电气控制工作；
刘峥（1981-），男，广东龙川人，广东水利电力职业技术学院机
械电子应用技术大专业，工程师，现为广州铠天实业有限
公司从事电气控制工作；
孙新忠（1979-），男，河南武陟人，西安理工大学水利水电工程硕
士，工程师，现为广州铠天实业有限公司从事电气控制工
作。

（责任编辑：卓政）