大桥水库工程风化岩坝料的工程特性分析

田中涛, 王森荣

(中国水利水电第五工程局,四川米易 617200)

摘 要·通过对大桥水库工程风化岩坝料的密度、单耗、沉降、级配、渗透系数等试验实测资料综合整理分析,总结出了大桥水库工 程风化岩坝料的工程特性。经过大量的工程实验资料表明·将弱风化岩体作为大桥水库工程开采条件下最优料源来使用,这一点 与地勘资料提出的结论是完全一致的。

关键词:风化岩坝料工程特性;滑动平均分析法;密度;单耗;沉降特征;级配;渗透系数
中图分类号:TV 4; TV 641
文献标识码: B

文章编号: 1001-2184(2000)04-0038-04

1 前 言

大桥水库工程堆石料填筑总量近 190 万 m³,在 其开采填筑过程中,炸药单耗 填筑密度等工程特征 指标变化较大,但总体趋势值均随时间延续呈规律 性变化。通过对上述工程特征指标的时间趋势分析, 总结其变化规律,结合风化岩体性质与坝料实测资 料,利用数理统计的方法进行统计分析,阐述风化岩 坝料的工程特性。

2 风化岩坝料工程特性分析的可行性

一般说来,除了因断层发育、岩性差异等形成的 囊状风化和夹层风化外,岩石的风化程度总是在地 表比较强烈,从地表向下至岩体内部,囊状风化程度 逐渐变得微弱,直至新鲜岩石。在完整的风化岩剖面 上,风化程度不同的岩石是逐渐过渡的,其间不像地 层岩性那样,存在较为清晰和确切的地质界面(线)。 岩体风化呈上述规律性变化,反映在风化岩坝料的 特性上也必将呈现出规律性变化。在坝料的开采填 筑过程中,相应的开采部位对应着填筑高程,在相应 的填筑高程内,各种坝料的工程特征指标可通过实 测或现场试验取得。因此,风化岩坝料的工程特性是 可以通过分析总结出一些规律性的物理量。

3 料场的工程地质特征

根据地勘资料表明: 堆石料场主要开采强风化 至微风化中酸性混染岩, 其中花岗岩占 65% ~ 70%, 闪长岩、辉绿岩占 30% ~ 35%, 抗压强度值均

收稿日期: 2000-06-06

在 100 M Pa 左右, 岩体内断层、裂隙发育, 大的断层 主要有 fus, fur7及 Fu, 小断层 2~3 m 发育一条; 岩 体受北东, 北西和近东西向三组裂隙切割, 呈碎裂~ 块状结构, 岩块直径一般 0 2~0 6 m。 沿断层破碎 带, 不同岩性界面及裂隙发育密集带有厚度不大、分 布范围广的囊状风化带及夹层风化带。

强风化岩呈浅黄褐色,岩石结构大部分已破坏, 小部分已分解为土。大部分岩石呈不连续骨架,风化 裂隙发育。岩体结构以碎裂结构为主,部分为散体结 构,裂隙间距为01~03m, f值为6~8。弱风化岩 呈浅灰白色, 微带黄褐色, 岩石结构清楚, 但风化裂 隙发育,裂隙壁风化剧烈,呈碎裂~碎裂镶嵌结构, 裂隙间距 0 2~ 0 4m, f 值为 8~ 10。 微风化岩呈现 浅灰色,岩石结构基本无变化,大部分裂隙闭合呈次 块状~ 碎裂镶嵌结构, 裂隙间距 0 2~ 0 5 m, f 值 大 于 10。 根据料场勘探及实际开采资料表明: 风化 程度按垂直分带高程划分为: ▽2 102~ ▽2 072 m 为强风化岩、▽ 2 072~ ▽ 2 052 m 为弱风化岩、▽ 2 052 m 以下为微风化~ 新鲜岩:风化水平分带划 分为: 0~15 m 为强风化岩, 15~45 m 为弱风化岩, 其余为微风化~新鲜岩。文中主要按垂直分带来分 析风化程度对坝料特性的影响作用,把水平分带的 影响也综合纳入垂直分带内考虑。

4 基本资料

4.1 料场开采时间 t 与高程 h 的关系

根据实测资料,料场开采高程 h~ t 时间关系见 图 1。

4.2 料场开采中炸药单耗资料

根据料场每月炸药实际消耗与坝体填筑量间关 系推求,由于二者间存在滞后关系,故在单耗计算过

图 1 料场开采高程 h~ t 时间关系图

程中用滑动平均分析方法,用 5 个月时间消耗炸药 量与坝体填筑量之间关系来推求,以消除滞后关系 影响,体现趋势值。根据料场石料天然密度与填筑密 度间关系把填筑量转化为料场自然方量,二者间关 系为 1.25 倍。炸药消耗量与坝体填筑量间逐月统计 值见表 1。炸药单耗 q 值首次修匀值见表 2。

	衣	1 炸约里	<u> </u>	巩重(日次)	」) 311	「衣
	19	96年	19	97 年	19	98年
月	炸药	坝体填筑	炸药	坝体填筑	炸药	坝体填筑
	/kg	量/m ⁻³	/kg	量/m ³	/kg	量/m ⁻³
1	. 0		8 406	23 989	21 138	65 670
2			7 800	31 965	29 496	35 932
3	4 075	26 144	14 256	28 181	11 208	34 466
4	2 856	32 869	12 216	39 155	28 608	29 285
5	14 726	45 989	1 416	25 051	0	18 755
6	3 648	39 624	5 976	56 697	46 761	50 826
7	9 873	0	6 912	37 692	14 928	48 116
8	672	2 874	8 760	56 455	32 256	41 516
9	456	13 834	14 498	46 817	47 496	18 867
10	6 627	58 210	24000	61 387	14 447	36 877
11	4 272	62 392	25008	62 740	7 651	36 069
12	10 434	62 836	29 160	63 544	16 431	25 202

4.3 坝体填筑时间 t 与填筑高程 h 的关系 根据实测资料, 坝体填筑 h ~ t 关系见图 2。

4.4 坝体填筑密度、取样密度资料

按逐月取样资料,计算出填筑密度算术平均值, 密度逐月统计值见表 3。

5 滑动平均分析法原理及其应用

滑动平均分析法就是用定长线段在时间轴方向 上逐点滑动,每次对落在定长线段内各观测点所对 应的观测值,用一个多项式曲线来拟合,以求出各观 测点处趋势值。一般用定长线段中点所在的趋势值, 作为线段范围内的趋势值,对趋势值拟合一条直线, 就可以预测趋势的变化。

在坝料工程特征参数中, 对炸药单耗和填筑密 度关系, 由于资料齐备, 具备时间上的可追溯性。因 此, 可用滑动平均分析法, 对其变化趋势进行分析。 不同时间对应不同风化程度坝料的开采与填筑, 据 此, 风化岩坝料的工程特性也可进行分析。下面对滑 动平均分析法应用步骤及方法进行介绍。

5.1 数据修匀

根据需要将时间周期取 5 个月, 用下式进行修 匀。

$$\begin{array}{l} ^{1}y_{-2} = 1/10(69y_{-2} + 4y_{-1} - 6y_{0} + 4y_{1} - y_{2}) \\ ^{1}y_{-1} = 1/35(2y_{-2} + 27y_{-1} + 12y_{0} - 8y_{1} + 2y_{2}) \\ \end{array}$$

$^{\prime}y_{0} = 1/35(-$	3y. 2+	12y- 1+	17y ₀ +	12yı-	3y2)
估价让次谢事			```	12. /	3

8 9 10 11 12	9	8	7	6	5	4	3	2	1	
0 159 5 0 136 5	0 159 5		0 287 1		0 243 2					1006
<u>1 185 7 0 112 2 0 15</u>	7	0. 185 7		0.260.8						1770
0 298 7 0 379 1	0 298 7		0 167 3		0 218 3		0 297 2		0 215 7	1007
<u>0 232 2 0 348 6 0 4</u>	2	0. 232 2		0.1841		0.2301		0. 285 4		1997
0 642 2	0 642 2		0 794 2		0 559 4		0 491 3		0 442 2	1008
<u>1 794 5 0 746 1</u>	5	0 794 5		0 650 2		0 685 8		0 522 5		1990
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 159 5 7 0 298 7 2 0 642 2 5	0 185 7 0 232 2 0 794 5	0 287 1 0 167 3 0 794 2	0 260 8 0 184 1 0 650 2	0 243 2 0 218 3 0 559 4	0 230 1 0 685 8	0 297 2 0 491 3	0 285 4 0 522 5	0 215 7 0 442 2	1996 1997 1998

だ出 #1

注: 设计开采单耗 0 412 1 kg/m3。

			C .		表3 埠	镇密度纺	社资料表	ž			单	₩ <u>: t/m³</u>
<u>ب</u>						时间	1 /月	-				
牛	1	2	3	4	5	6	7	8	9	10	11	12
1996			2 17 75	2 203 3	2 179	2 202 5	2 202 5	2 202 5	2 25	2 166	2 246 5	2 250 5
1997	2 229 2	2 191 5	2 212 5	2 264	2 247 5	2 238 8	2 201 7	2 284	2 276 6	2 326 7	2 219 4	2 211 6
1998	2 222 5	2 282	2 219	2 265	2 237	2 268	2 214 5	2 264 9	2 222	2 266		

注: 设计密度填筑指标 2 16 t/m 3。

$$\hat{y}_1 = 1/35(2y_2 - 8y_1 + 12y_0 + 27y_0 + 2y_2)$$

$$\hat{y}_2 = 1/70(-y_2 + 4y_1 - 6y_0 + 4y_1 + 69y_2)$$

 \hat{y}_i ——对应观测时间 t_i 处趋势值(修匀值)。

单耗随时间 2 次修匀值见表 4。 密度随时间 4 次修匀值见表 5。

式中 yi——对应观测时间 ti 处观测值;

表 4 作药单耗修匀值表

<u>单位·kg/m³</u>

Æ												0,
<u></u>	1	2	3	4	5	6	7	8	9	10	11	12
1996					0 238 4	0 281	0 258 4	0 211 3	0 143 3	0, 126 6	0 126 4	0. 162 8
1997	0 219 2	0. 281 3	0 283 9	0. 25	0 201 4	0. 172 3	0 172 8	0 228 6	0 297 3	0.3466	0 383 9	0. 423 0
1998	0 472	0.4769	0 567 1	0. 592 8	0 619 1	0 653	0 778 1	0 758 7	0 666 2	0. 740 1		

					表	5 填筑?	密度修匀	直表			单	$\overline{\mathbf{v}}$: t/m ³
Æ						时	间 /月					
.	1	2	3	4	5	6	7	8	9	10	11	12
1996			2 18	2 102	2 195	a 100	2 205		2 213	2 215	2 229	
				2 192		2 198		2 211		2 217		2 235
1007	2 22		2 223		2 244		2 238		2 287		2 247	
1997		2 214		2 241		2 235		2 264		2 28		2 225
1998	2 228		2 25		2 248		2 242		2 246			
1770		2 244		2 25		2 246		2 243		2 247		

5.2 拟合趋势分布回归直线

对上述修匀值时间和趋势配一条回归直线,炸 药单耗 g 及密度 ¼ 回归直线各特征参数见表 6。

	<u>表 6 g、¼ 回归直线特征参数表</u>										
	A (A)	B (B)	У	Y_{α}	п	Sδ					
q	0 049	0 021	0.878	0.463	30	0 102					
Y_d	2 201	1. 88 × 10 ⁻³	0.730	0. 449	32	0.017					

注: 回归直线表达式: q = A + B t, $Y_d = A + B t$

表中 *Y*:相关系数; *X*:相关系数临界值; α 显著水平,表中取 α= 0 01; *n*:样本总数; *S*_δ:剩余标准差。

所配回归直线相关系数 У不能作为衡量回归直 线好坏的标准,但有助于判别方程式效果。其剩余标 准差 S & 也只是反映地质条件复杂程度。检验上述回 归直线的好坏标准是实践效果而不是 S & 或 Y。

5.3 坝料开采单耗 填筑密度随时间分布趋势图

炸药单耗 $q \sim t$ 时间关系见图 3。表示开采孔排 距在 8 m × 5 m、8 m × 4 m、6 m × 5 m 条件下, KQ -150 型潜孔钻, 台阶高度 7~9 m, 集中装药条件下, 炸药单耗 q 随时间 t 的变化关系。

密度 ¾ ~ t时间关系见图 4,表示在 16 t 平碾 碾压遍数为 8 遍,洒水量为 3% ~ 4% 条件下密度 ¾ 随时间 t 变化关系。

5.4 曲线拟合优度评价

评价拟合曲线优度主要从其实际效果来检验, 通过对风化岩坝料的工程特性分析, 拟合曲线能够

反映物理量内在规律性。

图 4 坝体填筑密度 Xa~ t 时间趋势图

首先,可以从开采过程揭露情况来分析:1996 年12月至1997年4月间料场新揭示了Fio大断层, 断层及其影响带处开采料只能作为利用料使用。而 在此期间开采过程中,总体坝料开采单耗却仍有增 高的趋势,因此,开采出的坝料级配不良,填筑密度 偏低。同样的原因,在1997年10月至1998年3月 间料场开采过程中,出现大面积风化夹层和囊状风 化带而引起密度偏低。

在坝料开采过程中, 单耗在初期偏高, 因为在开 采中, 将大部分不能用作主堆石坝料的材料, 直接用 大功率推土机推运走, 留下强度较高的岩体后, 再进 行爆破开采。在 1997 年底, 发现料场爆破用炸药单 耗有增大的现象, 原因是坝料开采至微风化~新鲜 岩石部位按常规装药爆破后大块率和残埂率增高。 同时, 坝料级配不良, 填筑密度比趋势值偏低。

上述分析表明: 趋势预测与实际情况相吻合。在施工生产中,某些工程技术指标带有很大的人为性, 经验性,当人为经验或其它因素阻碍规律性表现时, 到一定程度必须通过调整使其适应。 趋势回归分析 的目的在于揭示其规律性。通过工程实践检验表明: 上述拟合趋势能反映风化岩坝料的实际工程特性, 趋势分析是可行的。

6 风化岩坝料的工程特性

6.1 开采单耗与填筑密度

由坝料开采及填筑高程时间关系对应料场风化 程度的高程分布,结合趋势分析的结果,分析出不同 风化程度岩体在开采及填筑条件下的单耗及密度变 化范围及平均值,见表 7。

_表7_不同风化程度岩石炸药单耗及填筑密度趋势值表_

~~ ㅁ네		a ∕kg • m	- 3	$\mathcal{Y}_d / t \cdot m^{-3}$			
尖利	f	变化范围	平均值	变化范围	平均值		
强风化	6~ 8	0 07~ 0 30	0 185 2	2 203~ 2 224	2 214		
弱风化	8~ 10	0 30~ 0 49	0 395 2	2 224~ 2 240	2 232		
微风化~ 新鲜岩	> 10	0 49~ 0 72	0 605 2	240~ 2 2612	2 251		

结合趋势分析的结果可知,开采弱风化岩最经 济。因为炸药单耗低于趋势分析结果值,而密度大于 趋势值。强风化岩与微风化岩却是单耗高于趋势值, 密度低于趋势值。

根据趋势分析结果, 由图 3、图 4 可以看出, 当 炸药单耗高于趋势值时, 填筑密度总是低于趋势值, 这是大桥水库工程石料场本身的特点。即在同等开 采水平条件下时, 由于料场岩体极度破碎, 一旦炸药 单耗高于趋势分析值时, 即会出现级配不良, 密度偏 低的现象。同样, 在同等开采水平下, 由于料场岩体 极度破碎, 当炸药单耗稍低于趋势分析值时, 其级配 较优, 密度就偏高。

出现上述结果是料场本身特性及开采水平等因 素综合作用的结果, 拟合曲线的起伏即反映上述因 素影响程度。当单耗偏低时, 料场岩性变软, 级配变 好, 密度变大; 当单耗变大时, 料场岩体强度增高, 爆 后级配变差, 密度偏低。

6 2 风化岩坝料的沉降特性

结合坝体,料场开采时间高程分布关系图可知 坝体在▽1962m、▽1982m、▽2002m 三座观测 房处,正好位于坝料风化程度分界处。▽1962m 以 下为强风化岩坝料,▽1962~▽1985m 间为弱风 化岩坝料,▽1985~▽2024m 为微风化~新鲜岩 坝料。三种不同风化程度坝料的沉降随时间关系曲 线见图 5。

注:初期沉降值将时间均统一到原点是便于资料分析对照。

由图 5 可知:初期沉降微风化~新鲜岩坝料最 大,强风化岩坝料次之,弱风化岩坝料最小。因此,弱 风化岩坝料沉降特性最优。

6.3 风化岩坝料的级配特征

根据坝料的 30 余组颗分资料分析表明, 各种风 化强度坝料级配特征与岩体结构特征相关, 其典型 级配见表 &

从不均匀系数值判断: 弱风化岩坝料级配最好, 强风化次之, 微风化~新鲜岩最差。 坝料的级配特征 是岩体裂隙结构特征与爆破作用影响的结果。

						14 TH 12 SV		2				
10 월 1 24 6 년	1 1			粒	径	范围	I /mn	1				
坝科尖别	> 200	200~ 160	160~ 120	120~ 100	100~ 80	80~ 60	60~ 40	40~ 20	20~ 10	10~ 5	< 5	备 注
22 図 / と 生	10.963		10.348		4. 213		13.077		4.543		9.091	1996-05-15 取
短八七石		9.836		4. 647		8 389		15. 739		9. 154		<u> 样 cu = 14.81</u>
記回化出	25. 250		8 705		7. 642		10 246		2 721		7.743	1997-02-27 取
羽风化石		7.405		6 206		9.115		10. 481		4. 486		样 $c_{\mu} = 17.5$
微风化~ 新鲜岩	25. 126		11. 551		8 669		6.178		3. 256		2 421	1998-06-27 取
		14 161		11. 472		6 561		8 304		2 301		样 $c_{\mu} = 6.62$

<u>8 风化岩坝料典型级配特征表</u>

6 4 **堆石料渗透特征**

堆石料典型渗透值见表 9。由表 9 可见, 各种坝 料均满足自由排水要求, 强风化岩 k 值最小, 弱风化 岩次之, 微风化~新鲜岩最大。不同坝料的渗透特征 值与其孔隙率相关。孔隙率愈大, k 值越大。

表 9 风化岩坝料典型渗透值汇总表

取样时间	$k / 10^{-1} \cdot \text{cm} \cdot \text{s}^{-1}$	坝料风化特征
1996-10	1. 8	强风化岩
1997-08	2 76	弱风化岩
1998-12	5.45	微风化~ 新鲜岩

7 结 论

上述分析不仅论证了风化岩坝料的工程特征,

阐述了风化岩坝料工程特性趋势分析的可行性,而 且可得出如下结论:在大桥水库工程区工程地质条 件与施工条件下,经综合分析表明,弱风化岩体最适 宜作为堆石坝料开采,其技术指标最优,经济效益最 佳,强风化岩次之。因此,在该工程区弱风化和强风 化岩体为最适宜开采坝料料源。

作者简介:

- 田中涛(1970年-),男,四川剑阁人,中国水利水电第五工程局三分 局晃桥水库项目部副总工,工程部部长,工程师,从事水利水 电工程施工技术及管理工作;
- 王森荣(1969年-),男,四川青川人,中国水利水电第五工程局三分 局冕桥水库项目部质安部副部长,工程师,从事水利水电工 程质检及试验工作.