土石坝不均匀沉降计算

沈永福

(国家电力公司成都勘测设计研究院,四川成都 610072)

 摘 要: 采用分期固结沉降的计算方法计算土石坝的不均匀沉降,可以更准确地反应土石坝坝体的沉降分布。

 关键词: 不均匀沉降; 分期固结; 分层总和法; 有限元计算

 中图分类号: TV 22
 文献标识码: B
 文章编号: 1001-2184(2000) 增-0039-02

1 前 言

正确地分析和计算土石坝沉降分布,对于预测 土石坝裂缝的位置及预防土石坝开裂有重要作用。 土石坝沉降计算方法,主要有分层总和法和有限元 法,这两种方法都不能准确反映土石坝的分期固结 特性,因而都不能全面地反映坝体的沉降分布。

2 土石坝土层的分期固结特性

土石坝土层的沉降在施工期和运行期具有明显 不同的固结特点: 施工期各土层的固结是在受力 条件不断随坝体升高而变化的情况下逐渐固结的, 而运行期各土层受力条件相对稳定; 施工期各土 层无渗透水流作用,而运行期的水流渗透将对土层 的排水固结产生影响; 施工期未完成的固结沉降 将在运行期得以继续,但施工期各土层的沉降不受 其他土层在本土层填筑前的沉降的影响,而运行期 各土层的沉降均会在其上覆土层沉降中产生累积效 应,所以,施工期完成的固结度愈大,则运行期的固 结沉降就越小。

由此可见, 土石坝在施工期, 施工期各年度之间 和运行期间, 各土层的受力条件和固结条件均大不 相同, 故其沉降过程也就具有明显的分期特点, 只有 正确地反映这一特点, 才能准确地反映坝体的沉降 分布特性。

3 分期固结沉降计算方法

根据上述土石坝的分期固结特点,采用《碾压式 土石坝设计规范 SDJ218-84》推荐的分层总和法,依 据固结沉降的基本概念,可以计算坝体不同时期的 沉降量。

将坝体自上而下分成几层进行计算,则:

第 i 土层在施工期的沉降量为在其上覆土层及 本土层荷重作用下, 本土层和其下伏土层在其后续 施工期内的固结压缩量的和, 用公式表示如下:

收稿日期: 1998-12-22

第 i 土层在施工期的第 t 施工年度的沉降量为:

$$S_{it} = S_{i}U_{it} + \sum_{i=i+1}^{i} S_{j}U_{jt}$$
 (1)

式中 *S_i*,*S_j* → 为第*i*,*j* 土层在第*i* 土层及其上覆 荷重作用下的压缩量;

> *U*_{*ii},<i>U*_{*ji*} → 为第 *i*, *j* 土层在第 *t* 施工年度的 固结度。</sub>

第 *i* 土层在运行期内的最终沉降为本土层及其 下伏土层在运行期的荷重作用下完成施工期未完成 的后续固结压缩量的和,用公式表示如下:

$$S_{i} = \sum_{j=i}^{j=i} S_{j} (1 - U_{jk})$$
 (2)

式中 tc ——为坝体竣工期(a);

其余符号类似同前。

各土层的压缩量和固结度计算可参阅文献[1] 及其他资料,本文不再赘述。

4 有限元计算方法

有限元计算目前采用最多的本构模型有弹塑性 模型和邓肯——张双曲模型,实际应用当中以后者 最为常用。

有关有限元的计算公式和方法,参考文献甚多, 本文不再赘述。

5 实例计算

某水库大坝为碎石土心墙堆石坝,坝高123m, 心墙高120m。坝顶高程244m,坝底高程121m。心 墙顶宽3m,上、下游坡1 025。坝基为沙卵砾石覆 盖,最大深度72m。

主要计算参数见表 1 和表 2 及表 3。

表1 主要计算参数表

+ *1	湿容重 Ӽ	饱和容重 У。	压缩模量 E _s 渗透系数 K _s			
⊥ ^7	$/10 \text{ kN} \cdot \text{m}^{-3}$	$/10 \text{ kN} \cdot \text{m}^{-3}$	∕M Pa	$/\text{cm} \cdot \text{s}^{-1}$		
堆石料	2 30	2 42	206	8 0 × 10 ⁻²		
过 渡 料	2 20	2 32	150	5. 0 × 10 ⁻²		
反 滤 料	2 15	2 31	130	7. 0 × 10 ⁻⁴		
坝基覆盖层	/	2 32	133	1. 79 × 10 ⁻²		
心 墙 料	2 32	2 35	40	3.6×10^{-7}		

表 2 心墙碎石土压缩曲线表

	应ナ	J P	∕M Pa	0	0.2	2 0.	4	0.6	0.8	1. 2	
	孑	し隙り	t e	0 27	0 2:	59 0 2	250 0.	241	0 239	0 220	
±		料	C ∕M Pa	₽/度	R_{f}	K	n	D	G	F	
堆	石	料	0	41	0 72	1 000	0.5	5.0	0.32	0.06	
过	渡	料	0	38	0 70	995	0 52	6.0	0.30	0 08	
反	滤	料	0	33	0 62	800	0 52	7.0	0.34	0 08	
心	墙	料	0 08	21.3	0 70	420	0 14	1.95	0.37	$0 \hspace{0.1cm} 035$	
坝	表覆	盖层	0	39	0.78	940	0.11	5.6	0 245	0.02	

本次计算假定坝体填筑工期为5年,各年坝顶 高程分别为:第1年131m,第2年151m,第3年 179m,第4年230m,第5年244m。计算分别采用 笔者提出的分期固结沉降计算方法、文献[1]的分层 总和法、平面有限元法进行比较计算。计算的主要成 果见图1和图2所示。图1和图2为横剖面坝轴线 上的沉降和固结度沿高程的分布图。

注: 为 $K_s = 3.6 \times 10^{-9}$ cm/s 时最终沉降值; 为 $K_s = 3.6 \times 10^{-9}$ cm/s 时最终沉降值; 为 $K_s = 3.6 \times 10^{-8}$ cm/s 时最终沉降值; 为 采用规范方法计算的最终沉降值; 为采用有限元方法计算的最终 沉降值。

图 1 沉降沿高程分布图

从图 1 可看出,本文方法与有限元方法所得的 沉降分布趋势是一致的;两种方法所得的最大沉降 位于坝体中部,符合实际情况;从图 1 还可以看出, 文献[1]的分层总和法所得的最大沉降值位于坝顶, 明显不能反映坝体各土层的受力固结特点;由图 1 和图 2 可知,随着心墙的渗透系数逐渐减弱,坝顶的 最终沉降逐渐加大,而坝体竣工时的固结度不断减 少;这说明坝体在施工期的固结程度将决定坝顶的 最终沉降值。

心墙的沉降比坝壳的沉降大,可能引起较强的

注: $K_s = 3.6 \times 10^{-6} \text{ cm/s}$; $K_s = 3.6 \times 10^{-7} \text{ cm/s}$; $K_s = 3.6 \times 10^{-8} \text{ c$

图 2 固结度沿高程分布图 拱效应; 左右坝肩的沉降明显小于河床中央的沉降, 将可能导致坝肩开裂。

为减少不均匀沉降的影响,建议进一步改善过 渡料的力学特性,以减少心墙与堆石间的沉降差;建 议左右坝肩采用塑性相对于河床中部坝体较高的土 料,或者是提前施工河床中央的坝体使其先期固结, 以减少坝肩与中央的沉降差;从而预防坝体开裂。

6 结 语

本文提出的分期固结沉降计算方法,较为真实 地反应了坝体的固结沉降过程,对于正确评价坝体 沉降的不均匀性,具有一定的实用性。

从实例计算成果中也不难看出,本文方法所得 的坝体沉降分布规律更符合实际情况。由于坝体土 层施工期的固结度将决定坝体的最终沉降分布,所 以,我们可以通过改善施工期的固结条件,如减薄心 墙、增加反滤和过渡层的透水性,增加心墙的渗透排 水性能等措施,以提高施工期的固结度,从而减小运 行期的沉降量,减少沉降的不均匀性。

影响坝体土层的固结沉降的因素很多,本文仅 就单向压缩固结的分期特点作了些探讨,尚有许多 不完善之处。

参考文献:

[1] 中华人民共和国水利电力部 碾压式土石坝设计规范[S].
 SDJ218-84. 北京: 水利电力出版社, 1985.

作者简介:

沈永福(1966年-), 男, 湖北麻城人, 国家电力公司成都勘测设计研 究院高级工程师, 从事水工设计工作.