张窝水电站近坝库区大屋基滑坡稳定性评价

颜 杰 (宜宾市水利电力勘测设计院,四川宜宾,644000)

摘 要 通过对大屋基滑坡基本特征及形成机制的研究, 宏观地分析了该滑坡现今的整体稳定程度, 并利用计算机采用 5 种不同 的稳定计算法, 对滑坡蓄水前后的整体稳定性进行验算与评价, 从而为滑坡整治提供可靠依据。 关键词 滑坡 计算机 稳定性 临空面 地震力 整治

1 前 言

张窝水电站系横江干流下游河段梯级开发中的 第五级,距下游云南省水富县约15km,为一低水头 河床式电站,设计水头19.5m,引用流量312m³/s, 设计正常高水位3105m,总装机容量3×16000 kW。大屋基滑坡的稳定性现状和水库蓄水至正常 高水位后的稳定性变化趋势及其对大坝安全和水库 正常运营的影响,是亟待解决的主要工程地质问题 之一。

2 滑坡区工程地质条件

2.1 地层岩性

滑坡区出露侏罗系中上统上沙溪庙组(J²_s)地 层,该套地层主要为暗紫红色砂质泥岩与细砂岩、粉 砂岩不等厚互层,泥岩多于砂岩。泥岩强度低,遇水 易软化,砂岩为长石石英砂岩,常以透镜体产出,具 交错层理。

2 2 地质构造

滑坡区位于石城山向斜的NW 翼, 岩层倾向横 江河谷, 倾角为 13 ° 17 ° 构成顺向坡。 滑坡区主要 发 育 有 N 50 E ∕NW 45 ° 50 ° N 75 ♥ ∕直 立 和 N 40 ♥ ∕直立的三组裂隙, 其中以NE 组裂隙最为发 育, 延伸最远, 密度 3~4 条/m; NW 的两组次之, 该 区的地震基本烈度为 7 °

23 水文地质

滑坡区地下水丰富,主要赋存于岩体的风化裂隙、滑坡坡积层和崩塌堆积层中,受大气降雨补给, 向横江排泄。在滑体内以及滑坡前后缘均见泉点出 露,这些泉的流量最小的为 0 051 L /m in,最大的可 达 651 L /m in,均为长年流水。据钻孔 ZK-1 揭露的 地下水埋深为 32 2 m,高于河水位 16 m。

3 滑坡的基本特征及形成机制

3.1 滑坡的基本特征

3.1.1 形态特征

大屋基滑坡位于距坝址上游1.0 km 的横江左 岸,平面上呈舌形,纵向长430m,横向(沿盐水公 路)宽360m,滑体厚30~44m,体积约4×10⁶m³。 该滑坡边界清楚,后缘高程400m,前缘高程约300 m 左右,上、下游侧均被冲沟所圈限。在滑体上可见 一级平台,高程为385~390m,长约200m,从平台 至滑坡前缘为一斜坡,长约220m,坡角25度左右。 坡面上有10多户农家,未见有住宅产生裂缝及下沉 现象,坡面上的周家古墓(咸丰二年即1852年修)砌 体完整,无滑坡活动造成的破坏迹象。在滑坡体前部 350m 高程有70年代修建的盐水公路横穿滑坡体, 该公路路面完好,无裂缝、下沉现象。滑坡的滑面在 该剖面上呈宽缓的"S'形,后缘顺层滑动,中部切层 近于水平,前部较陡为被滑体掩埋的原始斜坡,地形

3.1.2 结构特征

地表调查和钻探表明,大层基滑坡体的物质由 沙溪庙组(J²s)地层解体后的亚粘土、碎石土、砾石 土以及岩块和岩屑堆积所组成。其中滑坡体中部主 要由耕作土和亚粘土、碎石和砾石土以及变位的岩 块和岩屑组成;后缘为块石、碎屑夹壤土的崩塌堆 积,常有架空现象,并出露泉水;前缘为滑坡运动时 形成的碎屑流快速堆积在原始斜坡及阶地上而成。

滑坡的滑带深度及滑带物质特征见表 1。从表 1 可以看出,滑带物质为壤土夹碎石、砾石土和碎石 土,抗剪性能较强。

3.2 滑坡的形成机制

在地貌上, 双沟同源构成了滑坡的两个侧向切 割面, 加上坡前为横江所切而成的临空面, 在地质

80

表1 滑带物质特征表

位置	滑带深度	物质特征
一级台地 ZK1 号孔	40 19~ 44 33m	上部为棕红、褐红色砾石土, 砾石成 定向排列; 中部为砂岩块石; 下部为 含碎石沙壤土。
中部斜坡 ZK2 号孔	35.32~ 42.6m	棕褐、紫红色碎石、砾石土,碎砾石占 25%~35%,粒径2~50mm,其中以 8~12mm 居多,呈圆形、次圆至浑圆 状,土稍湿、可塑状,局部夹砂岩块 石。
公路外侧 ZK₃ 号孔	28 58~ 29.79m	红褐色、黄褐色粘土夹碎石。

上, 滑坡区处于石城山向斜的NW 翼, 岩层倾向与 坡向一致, 属顺向坡。沙溪庙组的砂质泥岩和砂岩由 于岩石强度低, 同时受构造活动的影响极易风化, 加 上该区降雨及地下水都丰富, 为滑坡的形成具备了 地质条件。

4 滑坡现今的整体稳定性分析

从现场调查的情况看, 滑坡未见重新活动所形 成的地裂缝, 滑坡平台上的农宅, 古墓均无滑坡复活 所产生的拉裂缝; 横穿滑坡的盐水公路路面完整, 无 沉降和裂缝。这些情况均说明滑坡现今的整体稳定 性很好, 无复活迹象。从以上的分析可知滑坡形成时 运动速度较高, 滑程较远, 滑体前部物质强烈解体, 这样的滑坡形成之后稳定性较好, 不易复活。

为进一步证实上述分析,我们用计算机对滑坡 现今的整体稳定性分别采用一般条分法、毕肖普法、 江布条分法、分块极限平衡法、传递系数法进行验 算,并用Monte-carlo 法对破坏概率进行模拟,计算 时均考虑孔隙水压力。结果如表 3 所示。其中稳定 性计算参数,见表 2,根据钻探所取的滑带土样所做 物理力学试验成果,结合钻孔资料综合分析得到。

参数	C/k	Pa 🤇	<i>₽</i> ∕ °	r∕t • r	n ^{- 3}	Q (地)	震系数)
滑带	48	05	21			$o = \frac{a}{a}$	- 0 017 5
滑体	48	05	23	<u>水上2</u> 水下1.	<u>143</u> 143	0- g (按基本)	_ u 01/ 5 烈度 7 算)
	表	夏 3 大	屋基济	骨坡稳定	定现状计	算结果	表
计算	方法	一般条 分法	毕肖 普法	江布条 分法	分块极限 平衡法	传递系 数法	平均值 破坏 概率
稳定(<u>0</u> = 0	2 206	2 248	2 053	2 220	2 150	2 175 2 0
/K 0	Q= 017 5	2 007	2 046	1 879	2 032	1. 980	1 988 8 0

上述结果表明,大屋基滑坡现今的稳定系数为 2 175 2,在地震力作用下为 1 988 8,破坏概率为 0, 滑坡的整体稳定性很好。

5 水库蓄水后滑坡的稳定性分析

水库蓄水至设计正常高水位(310 5 m)之后, 大屋基滑坡是否稳定,对大坝的安全关系很大。前面 已经论及滑坡的稳定现状很好,且地貌上无任何变 形破坏迹象,而水库设计正常高水位 310 5 m,达不 到 60 年一遇洪水高程 313 m。库水位的改变对地下 水位的影响较小。因此,水库蓄水对滑坡稳定性的影 响是不大的,下面通过计算进一步说明。

计算参数和数据分别取自表 2 和表 4, 计算结 果见表 5。

从表 5 可以看出,大屋基滑坡在水库蓄水至设 计正常高水位之后稳定性仍很好。既使在地震力作 用下,稳定系数仍高达 1.842,破坏概率为 0。

表 4 稳定性计算数据表(大屋基滑坡)

t A) 1 5	条块编号							
制	入坝	Ι	II	III	IV	号 V 备注 5 036 蓄水前 3 996 蓄水后 12 5 105 48 05 48 05 21 21 21 48 05 0 35 0 0 1.5 0 12 10 38 10 21 21 48 05 10 35 10 35 12.5 0 12.5 0 12.5 0			
		4 775	5 283	5 128	4 948	5 036	蓄水前	Ī	
W (I)	/t ·m ·	4 775	5 283	5 118	4 391	3 996	蓄水后	i	
$T\left(I ight)$	/°	28 0	1. 0	0.7	11.5	12 5			
L(I)	/m	130	72	68	85	105			
C(I)	/kPa	48 05	48 05	48 05	48 05	48 05	48 05		
$q_{(I)}$	/°	21	21	21	21	21	21		
$C_1(I)$	/kPa	0	48 05	48 05	48 05	48 05	0	48 05	
$\varphi_{I(I)}$	/°	0	21	21	21	21	0	21	
$L_1(I)$	/m	0	44. 0	44.0	40.0	35.0	0		
\mathbf{H} (1)	/	0	23. 0	19.0	10 0	1.5	0	蓄水前	
$H_1(I)$	/m	0	230	19.0	12 0	12 0	10. 0	蓄水后	
注	$C_1(I)$	ዋ(I) ቻ	」条间抗	前前指标	Б , <u>Н</u> 1(I) 为 条[间水柱	高度。	

表 5 大屋基滑坡在水库蓄水后稳定性计算结果表

计算方法	一般条 分法	毕肖 普法	江布条 分法	分块极限 平衡法	传递系 数法	平均值 破坏 概率
稳定 Q=0	2 084	2 129	1. 927	2 119	1.820	2 015 8 0 0
系数 $Q=$ /K 0 017 5	1 894	1. 935	1 763	1. 938	1. 680	1 842 0 0 0

为验证计算参数 *C*、 *印*值的准确性, 同时了解水 库蓄水至设计正常高水位之后, 滑坡前缘局部的稳 定状况, 从滑坡体靠公路里侧切一块小滑体进行计 算, 见附图及表 6。

表 6 大屋基滑坡前缘水库蓄水后稳定性计算结果表

计算方法	一般条 分法	毕肖 普法	江布条 分法	分块极限 平衡法	平均值	破坏 概率
稳定 Q=0	1. 070	1. 023	1. 021	1 070	1. 046 0	0 50
系数 $Q=$ /K 0 017 5	1. 015	1. 110	0 971	0 969	1. 015	0 57
	C = 48	05 kPa	0 2 21 °			

表 6 说明滑坡前缘小滑体用 C = 48 05 kPa, φ = 21 的试验值验算, 在水库蓄至 310 5 m 高程并作 用地震力时即处于极限平衡状态。且该滑坡在公路

附近亦无变形破坏迹象。

6 结 论

(1)滑坡区地处滇东北高雨区,降雨量充沛且多 暴雨;滑坡区为侏罗系上沙溪庙组软硬相间的砂岩 和泥岩组成的顺向坡;且具有两个侧向切割面和前 缘临空的地形条件,加之该区为7地震烈度区,从 而具备了滑坡形成的必要的条件。

(2) 据地表调查和稳定性计算表明, 大屋基滑坡

(上接第 74 页)

再通过DDE 数据交换把数据提供给 Intouch 环境 下编写的人机界面程序。

人机界面程序完成:运行参数的显示与实时更 新,运行报表的定时打印和召唤打印,运行数据的定 时存盘,历史趋势和实时趋势的显示和历史趋势的 召唤打印,数据越限时自动进入报警记录显示画面, 选择显示历史报警记录和报警记录小结。

开发中解决的难点有:

(1) Intouch 没有与下位机的通信软件, 需要自行编写通信程序。我们采用的方式为:采用 V isual Basic 编写通信程序, 获得的数据通过DDE 数据交换传递给 Intouch;

(2)V isual Basic 没有现成的串口通信程序, 我 们利用BC4 0 编写端口操作的DLL 程序供VB 调 用。编程中通过对端口的直接操作实现串口通信:

(3) 通过图像处理软件 Photo shop 4 0 扫描现场 实际照片嵌入 Intouch 中, 使显示画面真实、生动;

(4)在 Intouch 中实现语音报警、定时和召唤的 报表打印、文件操作、帮助文件打开。

5 结束语

本系统是在小型水电站实现计算机监控的一个

具有超稳性,水库蓄水至正常高水位之后稳定性仍 很高。对大坝及今后电站的正常运营无大的影响。

(3) 该滑坡形成后之所以稳定状况较好,除与滑 坡形成的条件及滑面形态以及滑动带的抗剪指标有 关外,还与滑坡周围的良好排水条件有关,因此,为 确保滑坡稳定,应进一步加强排水措施,不要人为地 往滑体中引水。

作者简介

颜 杰 男 宜宾市水利电力勘测设计研究院 工程师 学士 (收稿日期: 1998-10-22)

尝试。事实证明,在设备陈旧的小型水电站采用以监测为主、分层分布式的计算机监控系统是可行的,同时系统的可靠性、可扩充性、性能价格比也是可以满足要求的。在本系统投入使用后,该电站已经采用了"机电合一"的值班方式。

本系统采用工控机作为上位机,采用自行开发 的、已经成型的二次测量仪表及测控装置、结合智能 数据采集单元(ADAM 模块)作为下位机,使得硬件 可靠性及性能价格比大为提高。在软件上应用 Intouch 软件进行的上位机的人机界面的编程,使开 发周期大大缩短,开发出来的界面很漂亮、规范。

参考文献

- 1 殷国富等:水电站微机分布式监控系统的研制 测控技术,1997, 16(6)
- 2 温勃婴、杨建华 V isual Basic 在测控系统 RS-485 通信中的应用 测控技术, 1997, 16(4)
- 3 邱公伟等 实时控制与智能仪表多微机系统的通信技术 清华大 学出版社, 1996 07
- 4 刘忠源 徐睦书 水电站自动化 水利电力出版社, 1986, 11

作	者	íí	管	ī٢	ì	

- 王剑锋 男 四川电力试验研究院水机室 硕士 工程师
- 蓝洪榕 男 四川电力试验研究院水机室 高级工程师
- 吴 彬 男 四川电力试验研究院水机室 高级工程师

(收稿日期: 1998-08-17)